
N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  

Technical Report 32-7053 

A Two-Variable Asymptotic Solution for 
Three-Dimensional, Solar-Po wered, 

Low- Thrust Trajectories in the 
Wcinity of the Ecliptic Plane 

P. Wesseling 

Approved by: 

T. W. Hamilton, Manager 
Systems Analysis Section 

J E T  P R O P U L S I O N  L A B O R A T O R Y  

C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  

P A S A D E N A ,  C A L I F O R N I A  

March 15, 1967 



TECHNICAL REPORT 32- 1053 

Copyright @ 1967 
Jet Propulsion Laboratory 

California Institute of Technology 

Prepared Under Contract No. NAS 7-100 
National Aeronautics & Space Administration 



Acknowledgment 

The author is indebted to Prof. P. A. Lagerstrom of the California Institute of 
Technology, who suggested the use of the exact solution (Eq. 30). He also wishes 
to thank Mr. G. A. Flandro of the Jet Propulsion Laboratory for the benefit of 
many discussions. 

JPL TECHNICAL REPORT 32- 1053 iii 



Contents 

1 . Introduction . . . . . . . . . . . . . . . . . . . . . . . .  1 

I1 . Derivation and Discussion of the Dimensionless Equations . . . . . .  2 

111 . An Initially Valid Asymptotic Series for the Ecliptic 
Projection of the Trajectory . . . . . . . . . . . . . . . . . .  4 

1V . A Two-Variable Asymptotic Series for the Ecliptic 
Projection of the Trajectory . . . . . . . . . . . . . . . . . .  6 

V . An Approximate Formula for the Elevation Above 
the Ecliptic Plane . . . . . . . . . . . . . . . . . . . . . .  13 

VI . A Procedure to Approximate the True Thrust Acceleration . . . . . .  15 

VI1 . Comparison of Approximate Methods with Numerical Integrations . . .  15 

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . .  18 

References . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

Tables 
1 . Comparison of third approximation with numerical integration; 

initial eccentricity = 0 . . . . . . . . . . . . . . . . . . . . .  16 

2 . Comparison of third approximation with numerical integration; 
initial eccentricity = 0.2 . . . . . . . . . . . . . . . . . . . . .  

3 . Comparison of third approximation with numerical integration; three-dimensional; 

16 

initial eccentricity (in ecliptic plane) = 0 . . . . . . . . . . . . . . .  17 

Figures 
1 . Definition of the coordinate system (r. +. $) . . . . . . . . . . . . . .  
2 . Comparison of approximate method with numerical integration; 

2 

initial eccentricity = 0; E = 0.1 . . . . . . . . . . . . . . . . . .  5 
3 . Comparison of approximate method with numerical integration; 

initial eccentricity = 0; E = 0.2 . . . . . . . . . . . . . . . . . .  5 
4 . Comparison of approximate method with numerical integration; 

initial eccentricity = 0.2; E = 0.1 . . . . . . . . . . . . . . . . .  17 

5 . Comparison of approximate method with numerical integration; 
initial eccentricity = 0; E = 0.1, inward . . . . . . . . . . . . . . .  17 

JPL TECHNICAL REPORT 32-1053 V 



Abstract 

An approximate analytic solution is derived for the variables which describe a 
three-dimensional, solar-powered, heliocentric, low-thrust trajectory in the vicinity 
of the ecliptic plane. This approximate solution consists of the first three terms of 
an asymptotic series, valid in the limit of vanishing thrust. To obtain an extended 
domain of validity, the two-variable method is used. 

It is assumed that the solar-powered spacecraft is sun-oriented. Direction and 
magnitude of the thrust acceleration may change discontinuously at arbitrarily 
chosen instants. In the time-intervals between these instants, the direction of the 
thrust is constant with respect to the sun-spacecraft vector and the plane of the 
initial orbit. Moreover, in these time-intervals the thrust acceleration is assumed 
to be inversely proportional to the square of the distance to the sun. The actual 
variation of the thrust acceleration (owing to mass depletion and change in power 
received from the sun) may be approximated by step-by-step changes in the con- 
stant of proportionality. 

The results are compared with numerical integrations of the equations of motion. 
If the ratio of the thrust acceleration and the gravitational acceleration is less than 
1/10, the difference between the results given by the approximate formulas and 
those to numerical integration is, at most, 1% After 1.5 revolutions around the sun, 
no signs of growing errors could yet be discovered. The computing time needed to 
obtain numerical results from the approximate formulas is appreciably less than 
the time needed to perform numerical integrations of the equations of motion. 

It is concluded that the asymptotic series derived in this Report is a useful tool 
for the design of solar-powered, interplanetary, low-thrust trajectories. 

I 
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A Two-Variable Asymptotic Solution for Three-Dimensional, 
Solar-Powered, Low-Thrust Trajectories in the 

Vicinity of the 

1. Introduction 

Current breakthroughs in the design of large solar 
panels have caused much interest in solar-powered, elec- 
trically propelled space vehicles. This type of spacecraft 
is attractive because of the very high specific impulses 
which are within the reach of advanced electrical pro- 
pulsion systems. Under contract with Jet Propulsion 
Laboratory (JPL) a study of solar-electric spacecraft was 
recently completed at Hughes Aircraft Company (Ref. 1). 
The Advanced Technical Studies OEce at JPL, also, is 
tentatively planning a study group effort on solar-powered, 
low-thrust spacecraft. To support this work, suitable, 
trajectory programs are necessary. 

For trajectory computations, an integrating program 
developed by Melbourne and Sauer is available (Ref. 2). 
Numerical programs like this are relatively slow on the 
computer, and complicated. Therefore, a program which 
is simple and fast, and which gives approximate results, 
would be a useful tool for the design of low-thrust trajec- 
tories if the approximate results are accurate enough. Such 
a program would be analogous to a patched conic program 
for ballistic interplanetary trajectories. 

In this Report, an approximate, analytic, closed-form 
solution is derived for the variables which describe a 

Ecliptic Plane 

three-dimensional, solar-powered, low-thrust trajectory. 
The answers are given in the form of somewhat lengthy, 
but essentially simple, algebraic formulas containing sines, 
cosines and exponentials. Consequently, computer time is 
appreciably shorter than it is for a more accurate numer- 
ical integrating program. 

The approximate solution is derived with the two- 
variable asymptotic expansion technique (Ref. 3). This 
method can be used for other types of perturbations of 
Kepler's equations as well, a possibility which has already 
received the attention of G. A. Flandro, of the Systems 
Analysis Section, at JPL . 

A similar approximate solution can probably be derived 
for nuclear-powered low-thrust spacecraft, but the mathe- 
matical approach would have to differ from that followed 
in the present work. 

The reader who is mainly interested in the final results 
can find these at the end of Sections IV and V (Eqs. 59-67 
and Eq. 73). The approximations made in the analysis may 
be ascertained by a perusal of Section I1 and the beginning 
of Section IV. The accuracy of the approximate formulas is 
evaluated by a comparison with numerical integrations in 
Section VII. 
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II. Derivation and Discussion of the 
Dimensionless Equations 

Consider a space vehicle with a solar-electric propul- 
sion system, under gravitational influence of the sun. The 
gravitational field is assumed to be identical to the field 
generated by one point-mass. 

In spherical polar coordinates ( r , + , + )  (see Fig. l ) ,  the 
equations of motion (assuming + is small, that is, restrict- 
ing ourselves to trajectories in the vicinity of the ecliptic 
plane) are: 

+ m r ( 2  + i2) + F ,  - - -  ( m y -  GMm 
dt dt r2 

( 1 )  

(3) 
d - (miz$) = rFq - mr2q42 dt 

F,, Fg, Fq are the components of the thrust vector; for the 
rest, the notation is obvious. For the mass we have 

F m = - -  
C (4) 

where F = ( F :  + Fa + F$)M, and c is the exhaust velocity. 
Because electrical propulsion systems have a very high 
exhaust velocity, m is small and can be neglected in ap- 
proximate calculations. Equations (1-3) become 

d .  F+ - (r2+) = r - dt m 

(5)  

(7) 

Substituting r = l / u ,  and using + as the independent 
variable instead of t ,  gives for Eqs. (5)  and (6) 

(9) 

4 
I1 

\ 
\ 
\ 
\ :I \ 

I !  
\ 
\ 

I '  

' I  1.1 TRAJECTORY 

PROJECTION OF TRAJECTORY \ 
ON ECLIPTIC P L A N E  

Fig. 1. Definition of the coordinate system (r ,  +, $1 

where k = u4/.4' = 1 / H &  and H +  is the +-component of 
the angular momentum of the spacecraft. Equation (8) is 
the equation for an oscillator with nonlinear restoring force 
and damping. Equations of this type have been studied 
extensively. This is the reason for the change of variables. 

Equation (7) transforms into 

Because the spacecraft receives its power from the sun, 
the available power is proportional to l / r z .  At the present 
time, it is expected that in reality the thrust force will be 
approximately proportional to r1.7. It is assumed here that 
the thrust acceleration is proportional to l / r z .  Therefore 
we write 

where 
9' (0) + 5' (0) + [ (0)' = 1 
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so that the constant of proportionality Q is given by 

Because 7, 5 and [ depend on 9, changes in thrust, direc- 
tion and control setting can be included in the present 
model. Also, by periodically readjusting 7, 5 and 5, the 
assumed thrust acceleration can be made to approximate 
more closely the actual thrust acceleration which is not 
proportional to l / r 2 .  

The spacecraft is assumed to be oriented toward the 
sun. Hence the thrust direction is constant with respect to 
the sun-spacecraft vector (assuming that the exhaust 
nozzle does not move with respect to the spacecraft). It is 
also assumed that the thrust direction makes a constant 
angle with the plane of the initial orbit. If we assume that 
the thrust acceleration is proportional to l / r * ,  this means 
that 9, p and t are constant as long as the spacecraft main- 
tains the same orientation. 

In view of these considerations, the actual situation can 
probably be approximated closely if 7, t and [ are speci- 
fied as follows: 

where vn, Cn and [,, are constants. The points + = +,,, at 
which the thrust acceleration components are readjusted, 
may be chosen arbitrarily. Equations (&lo) then become 

k du e+ ~ [ i  + ($$>'I = GMk- Qsnk- Qv,,- - 
d+* u d 4  

It is convenient to make these equations dimensionless. 
The initial distance to the sun T, is the only unit of length 
that is available. The two accelerations GM/T; and Q / T ~  

give two time units, namely 

We have TI = 1/2x(~,/a,)~/~* P where a, is the semi- 
major axis, and P the period of the ellipse which the space- 
craft described before the thrust was turned on. At least 
a time T,  is necessary for the thrust to bring about an 
appreciable change of orbit. 

It will be assumed that the thrust is small compared 
with the gravitational force, i.e., TI << T,. In the be- 
ginning of the flight, we have t < < T,; the thrust does 
not yet have a large effect. Eventually, we have t > > T, 
and the thrust has changed the orbit drastically. 

The Occurrence of two time-scales is of great signifi- 
cance. It is the fundamental cause which makes the 
perturbation problem under consideration (the thrust is 
regarded as a small perturbation) singular. This means 
that it will be impossible to approximate the trajectory by 
an asymptotic series uniformly accurate for all times. The 
two-variable method has been devised to increase the 
time-span for which the asymptotic series is a good 
approximation. 

When dimensionless variables u* = UT,, t* = t / T ,  are 
introduced, and the asterisks omitted, the equations 
become 

where 

& =- < < 1  GM 
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These equations are difficult to solve even if only an 
approximation to the solution is sought by substituting 
an asymptotic series. After the substitution, one is still left 
with nonlinear equations because of the term (d+/d+)z in 
Eq. (16). 

However, for elliptic trajectories close to the ecliptic 
plane, the term (d+/d+)' will be small at all times; there- 
fore this term is neglected in Eq. (16) so that the equations 
become 

Equations (19) and (20) can now be solved independ- 
ently from (21). After k has been found, Eq. (21) can be 
integrated. The solution of Eqs. (19) and (20) gives the 
"projection" of the trajectory on the ecliptic plane. Equa- 
tion (21) gives, essentially, the distance above the ecliptic 
plane. 

First, an approximate solution for Eqs. (19) and (20) 
will be derived (Sections I11 and IV). Then Eq. (21) will 
be integrated (Section V). 

111. An Initially Valid Asymptotic Series for the 
Ecliptic Projection of the Trajectory 

A straightforward way to obtain an approximate solu- 
tion to Eqs. (19) and (20) for small E is to substitute the 
following asymptotic series: 

However, this procedure results in a series which can 
furnish a good approximation to the exact solution only 
for small times. This will now be demonstrated by study- 
ing, as an example, the case in which the spacecraft at 
the initial instant when the thrust is turned on describes 
a circle around the Sun in the ecliptic plane, and 
to = [n = 0, vo = 1. Equations (19) and (20) specialize to 

k? 
- - - E -  

dk -- 
d+ U 

(23) 

Because Eq. (22) must be a solution for arbitrary (small) 
values of E ,  and different powers of E are linearly inde- 
pendent, terms with like powers of E must satisfy Eqs. (23) 
and (24) by themselves. Before terms with like powers of 
E can be collected, the following Taylor series must be 
substituted for l/u: 

For the first three terms of Eq. (22), the following linear 
equations are obtained (collecting terms proportional to 
E O ,  and 2, respectively): 

-- 
- O  I dK(O) 

& 
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The units were chosen such that, initially, u = 1. If we assume the spacecraft is initially in a circular orbit, then k = 1 
and du/d+ = 0 at 4 = 0. When we remember that the initial conditions must be satisfied for arbitrary values of E ,  substi- 
tution of Eq. (22) gives, at + = 0: 

(n = 0,1,2, . . . 

Equations (25-27) with initial conditions (Eq. 28) areeasily solved. The final result is 

(29) I u =  1 + ~ 2 ( s i n +  - +) + E*{2(1- cos+) + 2+2 -&+sin+} + 0(E3) 

k = 1 - ~ 2 +  + 2{4(1- COS+) +2+'} + O(e3) 

The appearance of terms proportional to + (secular 
terms) is worthy of note. For + 1 / ~ ,  successive terms 
become of comparable magnitude; the series no longer has 
the fundamental property of asymptotic series, namely 

Hence, the applicability of Eq. (29) is restricted to 
+ < < I/&. 

A comparison with more exact numerical results ob- 
tained with the integrating program of Melbourne and 

\, 

c.o.1 
TWO DIMENSIONAL 
INITIALLY CIRCULAR 
T o = ' ,  S O = E , = o  

- NUMERICAL INTEGRATION 
AND THIRD APPROXIMATION 

FIRST APPROX I MATlON 

SECOND APPROXIMATION 

_ _ _  
. . . . . . . \ W INITIALLY VALID SERIES - -___-- 

Fig. 2. Comparison of approximate method 
with numerical integration; initial 

eccentricity = 0; E = 0.1 

Sauer (Ref. 2) is shown in Figs. 2 and 3. As expected, the 
initially valid series is not a good approximation for large 
values of d. 

As can be seen from these figures, the series obtained 
with the two-Variable technique has a much larger region 
of applicability. The two-variable method will be de- 
scribed and applied to the problem under consideration 
in the following section. 

- -n  1 c - ".L 
TWO DIMENSIONAL 
INITIALLY CIRCULAR 
770'1, lo=Eo= 0 

- NUMERICAL INTEGRATION 

FIRST APPROXIMATION --- 
. . . . . . . , SECOND APPROXIMATION 

- THIRD APPROXIMATION 

Fig. 3. Comparison of approximate method 
with numerical integration; initial 

eccentricity = 0; E = 0.2 
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IV. A Two-Variable Asymptotic Series for the 
Ecliptic Projection of the Trajectory 

The term ecliptic projection is used in the sense of 
Fig. 1. 

The breakdown of the initially valid series for large 
values of + demonstrates that the perturbation problem 
under consideration is singular. (For a good treatment 
of singular perturbation problems see Ref. 4.) Physically, 
this breakdown is caused by the fact that the thrust, even 
as E + 0, will bring about large effects if + is large enough. 

As shown in Section 11, the attracting body brings about 
changes in the spacecraft's position in a characteristic time 
T,; the thrust brings about changes in a characteristic 
time T ,  >> T,. Prof. J. D. Cole of Caltech proposed* to 
regard variables that vary appreciably in a time TI as func- 
tions of a fast variable ++ = (1 + O, E ?  + o3 e3 + * . . ) + 
(the Poincard-variable); and variables that change with a 
characteristic time T, (like the elements of the osculating 
conic) as functions of a slow variable + = E (1 + UE + 
bez + . . . )+. For many differential equations of the 
nonlinear oscillator type, this procedure gives a uniformly 
valid asymptotic series. In the present case, complete uni- 
formity cannot be obtained; but the domain of validity is 
larger than for the initially valid series. 

Before the two-variable method is applied, the prob- 
lem will be reformulated using an exact solution. 

The reader may convince himself that Eqs. (19) and 
(20) have the following exact solution: 

where 

1 u = A, e-@*+ 

With this choice of An the exact solution for k is discon- 
tinuous: 

Pn has the following Taylor series expansion: 

Hence 

It follows that the discontinuity of the exact solution for k 
at the points + = +,, is of order E .  

The exact solution gives at an arbitrary point + = 

The osculating conic corresponding to the exact solution 
at + = is 

where a is given by 

This exact solution breaks down when E is so large that 
(1 - ECn)* - 8e2 7; < 0. Requiring that u be continuous at 
the points + = +,, gives 

*See discussion by Kevorkian in Ref. 3. 

6 

Hence, cos a = 0 (l), so that the eccentricity of the oscu- 
lating conic is 0 ( E ) .  

We will restrict ourselves to trajectories which are more 
general than the exact solution, but have eccentricities of 
0 ( E ) .  It turns out that this restriction on the eccentricity 
of the osculating conic is not a severe limitation. A com- 
parison of the present approximate theory with that of 
numerical results (Section VII) shows that the approximate 
theory is still accurate for eccentricities higher than 0.5, 
for E = 0.1. 
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. 
To include more general trajectories with eccentricitiesof 0 ( E ) ,  an 0 ( E )  correction must be added to the exact 

solution. Also, this correction makes it possible to correctthe 0 ( E )  discontinuities in the exact solution for k. We 
write 

u = Ane-Pn+ (1 + E V )  

where An is given by Eq. (31). 

Substitution of Eq. (34) in (19) and (20) results in 

-- 

PnSn PnSn 

2Pn- + (1 + p:) u + 

2 1+,V[z- E 2~7n 2E7n 

dU dzU 
GZ 4 

Pn ~ + E K  - -- & ( 1 +  E U ) ]  - - E K  -- 

Pn Pn (1 + EK)' PnK- - = -- dK -- 
E d+ E 1+EU 

The Taylor series for pn gives 

1 - ( 1  + p: - A) = - Cn + E (27: - S i )  + E Z  (27% - S i )  
2~7n 

+ (87: - S i )  + 0 ( E * )  

Equations (35) and (36) will now be solved asymptotically with the two-variable method (Ref. 3). 

Two new variables are introduced: 

I The fast variable : ++ = (1 + O ~ E ~  + O ~ E ~  + . . . ) + 
Theslowvariable: Z = E ( ~ + U E + ~ E ~ +  . . ) +  

(37) 

The constants m2, a, b, etc., are chosen so that terms which cause nonuniformity are eliminated. It turns out that in the 
present case this is not possible, so that there is a certain arbitrariness in the selection of 02, a, b, etc., and a completely 
uniform result cannot be obtained. The problem contains already a slow variable, namely Pn+. It seems natural there- 
fore to define 7 as 

We also define 
++=+ 

These two variables are now regarded as independent, so that Eqs. (35) and (36) become partial Werential equations. 
The rule for differentiation is 
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Derivatives with respect to ++ will be indicated by a subscript 1; with respect to $, by a subscript 2. Equations (35) 
and (36) become 

The following asymptotic series are substituted in these equations: 

Substitution of Eq. (44) in Eqs. (42) and (43), insertion of the Taylor series for Pn, and collection of terms with like 
powers of E gives the following equations: 

I 8 JPL TECHNICAL REPORT 32-1053 



. 

To find the solution of Eqs. (4548) for +, < + < +n+l, initial conditions for U(O), U ( l ) ,  . * . , K ( @ ,  W1), . . * at + = +% 

have to be given. These conditions follow from the requirement that u, du/d+, and k be continuous at + = +,. Suppose 
we have at + = +,, - 0 

I = A, e-on+m (1 + ED,) 
+=+.-0 

Continuity of u, k and du/d+ requires that at + = +, + 0 (since A, has been defined such that A,e-Pn+n = A,+ e-on+l+n) 

From Eqs. (a), (41), and (44) follows 

Henoe 
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. 

Froms Eqs. (50) and (51) follow the conditions necessary to obtain a unique solution of Eqs. (45-48): 

With Eq. (a), the solutions of Eqs. (45-48) can be obtained at the cost of much labor but in a straightforward way. 
To bring out an important feature of the two-variable technique, the application of the so-called "boundedness con- 
dition", the derivation of U(0) and K'O' will be given. The derivations of U(l),  VZ), P2)  are quite similar and are 
not reproduced here, but the final results are given. 

Equation (45) gives 

The functions f ( O )  (z), (7) and U ( O )  (7) are still undetermined, but follow from the boundedness condition applied to 
and K ( l ) .  With Eq. (M), Eq. (46) gives 

The terms proportional to sin (+ - *,(O)) and cos (+ - U ( O ) )  in Eq. (55) generate in the solution for U(l) terms like 
+ cos  (+ - u(O))  and + sin (+ - @(O) ) ;  i.e., secular terms which are undesirable appear. Also, U(I )  will contain a term pro- 
portional to #?, and K( ' )  contains a term proportional to +. Because of these secular terms, the validity of the initially 
valid series is restricted to small values of 4. However, with the two-vari@le me$od, the uncJesirable terms can be 
eliminated by a judicious choice of the as-yet-undetermined functions f ( O )  (+), e(O) (+) and o ( O )  (+). 
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I The physical reason for the elimination of the secular terms is that the elements of the osculating conic change under 
influence of the thrust only and are therefore functions only of the slow variable F. Hence U ( * )  and K ( ’ )  may not be pro- 
portional to +. This is called the “boundedness condition.” Its application gives 

Hence 

Using Eqs. (53) and (a), we obtain 

In the same way, U(l),  K(’), U@), K ( 2 )  can be found. To determine U ( z ) ,  the boundedness condition has to be applied 
to U ( 3 ) .  This is why the equation for V3) has been written out (Eq. 48). The complete results are given in the follow- 
ing pages. The approximate formulas for u and k completely determine the trajectory. The accuracy is evaluated in 
Section VI. 

The time as a function of + can be determined as follows: since 

then 

This integral can be integrated either numerically or analytically by replacing l /uz (k)H by its asymptotic series. The 
analytic integration of the series for l/u2 ( k ) s ,  although straightforward, is rather cumbersome. However, it t u r n s  out 
that numerical integration of Eq. (58) with a step as large as 30° using the trapezium rule (approximating 1/u2 (k)M by 
the average of the values at the beginning and the end of the interval) is sufficiently accurate. When actual missions are 
studied, the thrust acceleration will have to be readjusted periodically at the points + = +n, as has been explained 
before. The size of the step for the numerical integration of Eq. (58) can be made to correspond with these periodic 
readjustments. This procedure would save computer time. 
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The final results for the ecliptic projection of the trajectory are 
[+n < + < +,+,I 

u = A,e-Zd [1 + E U ( 0 )  + E z U ( 1 )  + E3U(')] 

. 
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c 

where 

Scrutiny of the successive terms in the asymptotic series for U and K obtained in Eqs. (62-67) reveals that this series 
is not uniformly valid. The reason for this has already been given following Eq. (38). The domain of validity of the 
two-variable asymptotic series is given by 

This domain is larger than the domain of validity of the initially valid series. 

V. An Approximate Formula for the Elevation Above the Ecliptic Plane 

The elevation above the ecliptic plane is given by Eq. (21). Substitution of 

Since KiO)  = 0, dK/d+ = 0 (e). Hence to 0 ( E )  Eq. (68) is equivalent to 

JPL TECHNICAL REPORT 32-1053 
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The solution of this equation is 

I 14 

+ ( G , - -  "2;'.̂ ) cos(l - 5)?+]+ e 
where G,  and H, are constants of integration. Substitution of $ = $a + #b in Eq. (68) gives the following equation for #t,: 

1 

If one lets $u take care of the initial conditions, the initial conditions for #b are 

Since Eq. (71) is the equation for a harmonic oscillator with small damping, the two-variable method can be used to 
obtain an approximation for # b .  Let 

The two-variable method gives the following result: 

$ ( O )  = 0 

,/,(I) = -sinh ' f l  (-&,,G) [(on - cfl) sin* + (vf l  + c,) cos a] 
7, 

where 

a=+-+ ,  

It does not seem necessary to derive higher approximations. 

Summarizing, the following approximate formula for $ has been obtained: 

+ E zn sinh (: p,.> [ (Dn - cfl) sin + (qn + C,) COS a] 
rln 

where 
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VI. A Procedure to Approximate the True After each step +n- + +n in the computation of aF, the 
constants tn, qn and Cn must be readjusted for the com- 
putation in the next interval +n+ +,+,. Ideally, we have 

Thrust Acceleration 

It has been pointed out already that although the 

thrust force in general does not obey the same propor- 
tionality. Suppose we have the dimensionless expression 

power received from the sun is proportional to 1/r2$ the (t2 + v2 + c2) C_ a$ (78) 

The following formula a suitable approximation: 

(79) 
where m, is the total mass of the spacecraft at time t = 0, 
and the exponent p is left undetermined. Since dm/dt = 
- F/c the mass at time t is given by 

The size of the step should also be subject to the require- 
+ [:)% from UP (+,,+J ment that the deviation of E (ti + 

be less than %%. 

r n ( t ) = m , [ l - ~ ' $ d t ]  (75) If the thrust direction is changed, the ratio's and 
Cn,,,, are changed accordingly. For the purpose of pre- 
liminary mission design and optimization, it is appropriate 
to allow changes in propulsion system control setting and 
thrust direction only at the points + = 4,. This procedure 
would save computer time while the work of Melbourne 
and Sauer indicates that the results are not very sensitive 

where c is the dimensionless exhaust velocity. 

The true thrust acceleration aF is given by 

UP -1 to the details of the thrust program. 
a F  = &UP [I - &i' (76) 

For constant propulsion system control setting, the pro- 
pulsion system will be a function of the solar distance 
only. With a fair degree of generality one can assume that 
c = yuq, where y is a constant. 

one obtains 

The integral in Eq. (77) can be evaluated in the same way 
as the integral in Eq. (58) for the time t. The appropriate 
size of the step must be determined by comparison with 
results obtained by numerical integrating, for instance, 
with the program of Melbourne and Sauer (Ref. 2) which 
prints out mass and thrust acceleration as a function of 
time. The difference between the thrust acceleration 
given by the approximation method and that given by the 
Melbourne-Sauer program should be less than %%. The 
points 4 = +n are made to correspond with the size of 
the step. 

VII. Comparison of Approximate Methods 
With Numerical Integrations 

For the case that the thrust acceleration is exactly pro- 
portional to 1/r2, and propulsion system control setting 
and thrust direction relative to the spacecraft-sun and 
spacecraft-Canopus vectors are constant, comparisons 
have been made with numerical integrations. In this case, 
no readjustments of the assumed thrust acceleration are 
necessary; the subscript n assumes the value 0 only. For 
two-dimensional trajectories, the program developed by 
Melbourne and Sauer (Ref. 2) for the IBM 7094 computer 
was used. In the three-dimensional case, this program 
does not allow the user to prescribe the thrust accelera- 
tion. Therefore, a separate program called NUTRAL was 
written for the IBM 1620 computer which integrates the 
three-dimensional equations of motion using a Runge- 
Kutta integration technique. NUTRAL stands for numeri- 
cal integration of trajectories of spacecraft with low thrust. 

The results of the present asymptotic theory as given 
by Eqs. (59-67) and Eq. (73) have been programmed for 
the IBM 1620 computer. The program is called ASTRAL 
(asymptotic series for trajectories of spacecraft with low 
thrust). 
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The following cases were computed: 

( I )  Two-dimensional, initial orbit circular, vo = 1, 

(2) Two-dimensional, initial orbit circular, yo = 1, 

(3) Two-dimensional, initial orbit elliptic with eccen- 

(4) Two-dimensional, initial orbit circular, vo = -1, 

(5) Three-dimensional, initial orbit circular in the 
ecliptic plane, vo = ?4(3)%, Co = 0, to = W ,  E = 0.1. 

Co = 0, E = 0.1. 

to = 0, E = 0.2. 

tricity = 0.2, va = 1, Co = 0, E = 0.1. 

to = 0, E = 0.1. 

r 

Numerical Approximate 

In ASTRAL, the time-integral Eq. (61) was computed 
for all these cases with the trapezium-rule, using a step 
size of 30°. 

He 

Numerical Approximate 

For cases (1) and (2), a first, second, and third approxi- 
mation was computed with the present approximate 
theory using only the first, the first two, and the first three 
terms, respectively, in the asymptotic series for U and K. 
The results are shown in Figs. 2 and 3. For E = 0.1, the 

1.1806 

2.2591 

4.0323 

3.8242 

3.8599 

4.0703 

206.1 

3 16.4 

398.2 

443.6 

1.1831 1.1815 

2.2682 1.3939 

4.0246 1.7956 

3.6844 1.9977 

3.8093 2.2209 

4.02 18 2.2791 

successive approximations approach quite rapidly the 
result given by numerical integration. The third approxi- 
mation as programmed in ASTRAL is compared with 
numerical integration in Table 1. It is noteworthy, in the 
approximate theory, that the error does not increase 
steadily as + increases; instead, it oscillates. This is a char- 
acteristic feature of the two-variable method. After reach- 
ing a maximum of a few percent at + = 398.2O, the error 
decreases again to about 1% in r, almost nothing in Hg, 
and less than 1% in t. From Fig. 3, it is clear that for E = 0.2 
the error becomes intolerably large. The present approxi- 
mate theory seems to be useful only for E smaller than 
about 0.15. In practice, it appears that the value of E will 
be about 0.06. For such a low value of E ,  the error in the 
approximate theory should be considerably less even than 
in Table 1. 

The present theory assumes (see Section IV) that the 
eccentricity of the osculating conic is O ( E ) .  For case (3), 
the program of Melbourne and Sauer indicates that dur- 
ing the first revolution the eccentricity of the osculating 
conic reaches a value of 0.53. Despite this high value of 
the eccentricity, the error in the approximate theory is 
small, as shown in Fig. 4 and Table 2. 

Table 1. Comparison of third approximation with numerical integration; initial eccentricity = 0 

Table 2. Comparison of third approximation with numerical integration; initial eccentricity = 0.2 

I Two-dimensional E = 0.1; qo= 1; lo = O  

1.1834 

1.3975 

1.7894 

2.0750 

2.2153 

2.2757 

t 

Numerical I Approximate 

1.9065 

5.43 15 

16.1034 

30.1624 

35.4000 35.2515 

37.7000 37.5087 

108.7 

314.2 

393.5 

448.7 

492.9 

521.1 

Numerical 1 Approximate I Numerical I Approximate 
~~ 

1.4775 

3.9358 

4.3242 

3.81 13 

4.6717 

6.871 2 

9.7245 

1.4831 

4.1318 

4.3092 

3.6370 

4.4900 

6.8632 

10.3347 

1.2779 

1.5833 

2.0492 

2.3000 

2.4666 

2.6362 

2.78 19 

- 
1.5664 

1.9943 

2.2254 

2.3829 

2.5500 

2.6916 

I Two-dimensional E = 0.1; q = 1; l = 0 

t 

Numerical Approximate 

2.1 143 

10.1200 10.7721 

31.8000 34.6533 

41.7000 44.3093 

48.6000 50.8540 

58.2000 60.4484 I 70.2000 74.0477 
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1 . 

c 
Dwreer 

60 
120 

180 

240 

300 
360 

r.0.1 
TWO DIMENSIONAL 
INITIAL ECCENTRICITY =0.2 
30='. SO=€O'O 

-NUMERICAL INTEGRATION 

- THIRD APPROXIMATION 

Numerical Appmximate Numerical Approximate Numerical Approximate Numerics" 

1.029 1 .om 1.087 1.086 1.018 1.024 1.32 

1.213 1.212 1.176 1.176 2.143 2.161 3.69 

1.698 1.689 1.280 1.281 3.873 3.913 4.77 

2,563 2.532 1.420 1.420 7.332 7.357 4.05 

3.238 3.193 1.597 1.591 13.408 13.246 2.94 

3.169 3.147 1.771 1.764 19.943 19.642 2.52 

degrees 

Fig. 4. Comparison of approximate method 
with numerical integration; initial 

eccentricity = 0.2; E = 0.1 

In Fig. 5, an inward trajectory is represented; the 
approximate theory is as accurate as for the outward tra- 
jectory in Fig. 2. 

The results for a three-dimensional trajectory, given in 
Table 3, show that the accuracy is highly satisfactory up 
to 4 = N O o ,  where the spacecraft is 4 O  above the ecliptic. 

ASTRAL and NUTRAL compute the same quantities 
on the same computer. The running time of ASTRAL is 
only about one-tenth that of NUTRAL. 

T W O  DIMENSIONAL INWARD TRAJECTORY 

-NUMERICAL INTEGRATION 

- THIRD APPROXIMATION 

Fig. 5. Comparison of approximate method 
with numerical integration; initial 
eccentricity = 0; e = 0.1, inward 

It can be concluded that the accuracy of the approxi- 
mate formulas developed in the foregoing pages, and the 
gain in computer time realized by ASTRAL, are sufEcient 
to justify the development and use of ASTRAL as a design 
tool for three-dimensional, interplanetary, solar-powered, 
low-thrust trajectories. 

Table 3. Comparison of third approximation with numerical integration; three-dimensional; initial eccentricity 

Approximote, 
degrees 

1.49 

4.17 

5.36 

4.64 

1.72 

0.68 
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Nomenclature 

acceleration due to thrust 7 

constant of integration, defined in Eq. (31) t 

U 
constant of integration, defined in Eq. (52) 

P n  

thrust force E 

gravitational acceleration due to the sun at unit 

distance + - + constant, defined in Eq. (69) 

constant, defined in Eq. (71) 
+n +-component of the angular momentum of the 

spacecraft % 

k = l/H$ t n  

%n 

mass of spacecraft at the moment that the thrust # 

mass of spacecraft 

turned on 

distance of spacecraft to the sun 

time 

u = 1/r 

constant, see Eq. (30) 

ratio of gravitational and thrust acceleration at 
the instant that the thrust is turned on 

angular position in ecliptic plane; fast variable 

slow variable, defined in Eq. (39) 

point where thrust acceleration is readjusted 

of thrust acceleration in interval 
+n < + < +n+l I +-component 

#-component 
r-component 

angular position relative to ecliptic plane 
(see Fig. 1) 
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